Block Cipher Involving Key Based Random Interlacing and Key Based Random Decomposition
نویسندگان
چکیده
Problem statement: The strength of the block ciphers depend on the degree of confusion and diffusion induced in the cipher. Most of the transformations used for this purpose are well known to every one and can be broken by a crypt analyzer. Therefore, in order to counter attack the crypt analyzer, there is a need for better transformations in addition to the existing one. Approach: We tried to use key based random interlacing and key based random decomposition for this purpose. So that, a crypt analyzer cannot understand how interlacing and decomposition is done in every round unless the key is known. Results: The strength of the cipher is assessed by avalanche effect which is proved to be satisfactory. Conclusion/Recommendations: Key based random interlacing and decomposition can be used for introducing confusion and diffusion in block ciphers. The cryptanalysis carried out in this regard shows that the cipher cannot be broken by any cryptanalytic attack.
منابع مشابه
Towards Understanding the Known-Key Security of Block Ciphers
Known-key distinguishers for block ciphers were proposed by Knudsen and Rijmen at ASIACRYPT 2007 and have been a major research topic in cryptanalysis since then. A formalization of known-key attacks in general is known to be difficult. In this paper, we tackle this problem for the case of block ciphers based on ideal components such as random permutations and random functions as well as propos...
متن کاملMessage Based Random Variable Length Key Encryption Algorithm
Problem statement: A block ciphers provides confidentiality in cryptography but cryptanalysis of the classical block ciphers demonstrated some old weaknesses grabbing a partial key in any stage of encryption procedure leads to reconstructing the whole key. Exhaustive key search shows that key generation should be indeterminist and random for each round. Matching cipher-text attack shows that la...
متن کاملDial C for Cipher - Le chiffrement était presque parfait
We introduce C, a practical provably secure block cipher with a slow key schedule. C is based on the same structure as AES but uses independent random substitution boxes instead of a fixed one. Its key schedule is based on the Blum-Blum-Shub pseudo-random generator, which allows us to prove that all obtained security results are still valid when taking into account the dependencies between the ...
متن کاملImpossible Differential Cryptanalysis of Reduced-Round Midori64 Block Cipher (Extended Version)
Impossible differential attack is a well-known mean to examine robustness of block ciphers. Using impossible differ- ential cryptanalysis, we analyze security of a family of lightweight block ciphers, named Midori, that are designed considering low energy consumption. Midori state size can be either 64 bits for Midori64 or 128 bits for Midori128; however, both vers...
متن کاملStrengthening the Known-Key Security Notion for Block Ciphers
We reconsider the formalization of known-key attacks against ideal primitive-based block ciphers. This was previously tackled by Andreeva, Bogdanov, and Mennink (FSE 2013), who introduced the notion of known-key indifferentiability. Our starting point is the observation, previously made by Cogliati and Seurin (EUROCRYPT 2015), that this notion, which considers only a single known key available ...
متن کامل